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Transport and entropy production due to chaos or turbulence
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A projection-operator method is developed for the statistical-mechanical formulation of chaotic or turbulent
transport, such as chaos-induced friction in a forced damped pendulum and turbulent viscosity in a turbulent
fluid. Then the nonlinear deterministic equations of motion for these dynamical systems are transformed into
linear stochastic equations with chaotic or turbulent fluctuating forces. This leads to a fluctuation-dissipation
formula which relates the chaotic or turbulent transport coefficients to the time correlation of the fluctuating
forces. Applying this theory to the forced damped pendulum, we explore the chaos-induced friction and the
power spectra of chaotic orbits. Applying it to the fluid turbulence governed by the Navier-Stokes equation, we
find that the turbulent viscosity in the inertial subrange depends on wave numaek # with ,6':‘3—1
+ 3| o, q being the intermittency exponent of ordgr
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[. INTRODUCTION Thus it turns out that, in order to understand various
physical processes in chaos and turbulence, the following
Recently much attention has been paid to the study ofmust be studied from the statistical-mechanical point of
various spatiotemporal phenomena observed far from equitiew.
librium [1-4]. Particularly, the self-organized formation of (1) The statistical properties of chaotic orbits and their
macroscopic structures and sustained limit cycle oscillationfluctuations, such as their power spectra and time-correlation
are their typical examples and are called dissipative strucfunctions, where the variables of the chaotic orbits are re-
tures[4]. They are observed not only in laboratory experi-garded as the stochastic procedses.
ments but also in the geophysics scale. The emergence of (2) The statistical properties characterizing the geometri-
dissipative structures are controlled by changing the noneal phase-space structures of chaos, such as the fluctuation
equilibrium parameter, the amount of energy injection rate taspectra of local dimension and local expansion rate of nearby
the system under consideration. It is not clarified yet, how-orbits [4].
ever, what physical processes underlie the dissipative struc- (3) The statistical properties of the chaotic or turbulent

tures when chaos or turbulence exists. transport, such as the chaos-induced friction and the turbu-
For certain ranges of nonequilibrium parameter, systement viscosity, and their energy dissipation.
show chaotic or turbulent behavioé—6]. Chaos or turbu- (4) The stochastic approach to chaos and turbulence.

lence is a very general phenomenon. It exists in quite wide The main purpose of this paper is to develop a general
ranges of nonlinear dissipative systems far from equilibriumscheme for the statistical-mechanical formulation of the cha-
and exhibits various transport processes such as chaogtic or turbulent transport and the stochastic approach to
induced friction in a forced damped pendulum and turbulenthaos and turbulence. This will be done by extending the
viscosity in a turbulent fluid7-9]. Their transport coeffi- statistical-mechanical formulation of the molecular transport
cients are much larger than the corresponding moleculamear thermal equilibrium in terms of the molecular fluctuat-
transport coefficients, since their mixing lengths are muchng force, which is often known as the theory of generalized
larger than the molecular mixing lengths such as the meaBrownian motiond13-15.
free paths of molecules in gases. Then the projection-operator method will be applied to
The transport processes are accompanied by the dissiptiie nonlinear dissipative systems far from equilibrium, so
tion of the macroscopic kinetic energy into molecular ther-that the nonlinear evolution equations such as the equations
mal motions. This energy dissipation due to chaos or turbuef motion for the forced damped pendulum and the Navier-
lence also brings about an entropy production which is muclstokes equation for fluid flow are transformed into linear
larger than that due to the molecular transport. stochastic equations with nonlinear chaotic or turbulent fluc-
One of recent trends in the study of turbulence is thetuating forces, which are, however, non-Markovian. This
dynamical systems approafh0,11]. Therefore, it would be amounts to the renormalization of the molecular transport
an interesting question whether we can formulate the chaoticoefficients by the nonlinear interactions which cause chaos
or turbulent transport and energy dissipation in terms of ther turbulence[16,17]. This also gives a generalization of
evolution equations of the system by extending the statisticdiwayama-Okamoto’s theory18] which explores the eddy
mechanics of nonequilibrium systems near thermal equilibviscosity in a two-dimensional inviscid fluid.
rium. Thus we shall obtain a general scheme for the formulation
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of the chaotic or turbulent transport in terms of chaotic orfor incompressible fluids, whene,, (u) is the inertial term
turbulent fluctuating forces. This will give a fluctuation-
dissipation formula for the chaotic or turbulent transport in _ ’
dissipative systems far from equilibrium. In order to show vak(U)_ﬁE,y 2 Vagy(K)UgpUkp, 24
the structure of the formulation explicitly, we shall apply the
formulation to the chaos-induced friction in a forced damped i
pendulum and the turbulent viscosity in a turbulent fluid. Vapy(K)=— §{kﬁAa«/(k)+k7Aaﬂ(k)} 29
This paper is organized as follows. In Sec. Il, we summa-
ize the main features of the evolution equations for dissipawith A, (k)= &,,,— (k.k,/k?). HereX | is the sum ovep's
tive systems, and introduce the long-time average of the rat@ith a cutoffk.(p<k.), »° is the kinematic molecular vis-
of entropy production. In Sec. Ill, the evolution of the time cosity, andK ,, is a steady external force. The inertial term
correlation of macrovariables is shown to be governed by & , (u) represents the nonlinear interactions between hydro-
master equation for thé-function density of macrovariables. dynamic modes and causes turbulence when the Reynolds

In Sec. IV, we develop a general scheme for renormalizingyumber increases beyond a critical value. The average rate of
the molecular transport by the nonlinear interactions so as tghase-space volume contraction is given by

obtain the chaotic or turbulent transport explicitly. In Sec. V,

the power spectra of chaotic orbits and the entropy produc- @) _ ; Il ' o2

tion due to chaos or turbulence are investigated. A _g Z _32 vk,
As the application, in Sec. VI we take the forced damped

pendulum and explore its chaos-induced friction coefficientwhere the bar means the long-time average.

power spectra and entropy production. In Sec. VII, we take It turns out from Eqgs(2.1) and (2.3 that the evolution

homogeneous turbulence in an incompressible fluid govequations for a complete set of macrovariablagt)

erned by the Navier-Stokes equation, and explore the turbu={A (t)},(/'=1,2,...)consist of three terms

lent viscosity in terms of a turbulent fluctuating force and its

scaling exponent in the inertial subrange. In Sec. VIII, we A/(t)=v/(A(t))+J9(A(t))+ K (A(t)), (2.7

add an external noise to a system whose dissipative term is

nonlinear, and show how the foregoing scheme must be ewherev (A) is a nonlinear reversible term which causes

(2.6

&uak

tended. Section IX is devoted to a brief summary. chaos or turbulencel’(A) is a linear irreversible term
Il. EVOLUTION EQUATIONS FOR DISSIPATIVE %A)=-> T'%A,, 2.9
SYSTEMS n

Let us consider the dissipative dynamical systems. OnandK ,(t)=K (A(t)) is a periodic external force with a fre-
gxample is the periodically forced pendulum whose evoluquency w®. The matrixI“}n represents the average rate of
tion equations for anglel and angular velocityp take the  energy dissipation due to the molecular transport, sucjfas

form [4] of Eq. (2.1) and »°k? of Eq. (2.3).
_ Under time reversal— —t, A (t)—e A (1), (e,=+1
q p or —1), o= — w° we have
: —sing—9°p+b cos - -
P =| TSmaTyREbeost ] A=A, v A=A,

wO

(A=, 3%A), K (A)——e K (A). (2.9

where 7° is the molecular friction coefficient and is the Therefore, if we neglect the terdf}(A), then the evolution
amplitude of th% driving force with angular frgquena;? equations(2.7) are invariant under time reversal. In other
and phaseh=w"t+ ¢o. The nonlinear term sig causes ords, the terms ,(A) andK (A) are reversible, whereas
chaos wherb increases beyond a critical value. The averaggne termJ%(A) is irreversible. This irreversible term brings
rate of volume contraction in the phase spagep(¢) is  pout the phase-space volume contraction

given by

. A, 83°%

9q op 9 AND=> ——=> —L=->T9 . 2.1
@-"9, P —¢=—y0. (2.2 2/: IA, < A, 2/: s (2.10

g dp Jd¢

) ) ) This irreversibility arises from the molecular transport such
Another example is the Navier-Stokes equation for theas 0 and »°, which brings about the dissipation of the mac-
Fourier components of local fluid velocity Uc  roscopic energy into microscopic thermal motions, i.e., the

= (Uyk Uy ,Uz) With wave vectork(k<k.~10° em™*),  conversion of the macroscopic energy into heat. Its average
which takes the fornj7] rate of energy dissipation is given by @|=x 19 .
) The physical quantity which represents this energy dissi-
Uk =0 ak(U) = 12K2U g+ K (2.3 pation is the entropy production which is given in the fol-
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lowing manner. Let us take a statistical ensemble of systemshere substituting E¢2.7) gives the operator
in the phase space spanned{By }, and denote their density
by w(A). Let us consider the time evolution @f(A(t))
along the orbitA(t). The conservation of systems leads to

the continuity equatiomw/dt=—3 ,(d/dA,)WA, . Hence,

d
M= —E/ E{v/(a)+J9(a)+ K, (a)}. (3.6

along the orbitA(t), we have This is integrated to give
q S ] ik ga(t)=exptM]ga(0). (3.7
Inw A(t)=— —+ -2 .
(At)= /(9A } 7 dA, It is convenient to introduce the operator
(2.11
J
Then Boltzmann's entrop$(A) = kg In w(A) leads to the av- A= {v(a)+3%a)+ K/(a)}g, (3.9
erage rate of entropy productidm9] g ’
E— 0 which is conjugate toM. Then Eq.(3.2) gives
5=k 2ﬂ=k 2&=k21“0 (2.12
B = (?A/ B = (9A B = A "

A/(t)=J a/{e‘Mga(O)}da=J a,(1)ga(0)da, (3.9
ke being the Boltzmann constant. Therefogss kg|\(@). It

should be noted, however, that this does not contain the ef¢nere the partial integration giv¢s7]
tropy production due to chaos or turbulence. a (H)=exdtAla, . (3.10

I1l. TIME CORRELATIONS OF MACROVARIABLES SinceA/(t):[a/(t)]a:A(o) from Eq. (3.9), the time evolu-
tion of a,(t) coincides with that ofA (t). Therefore, we
havef(A(t))=[f(a(t))]a=a(o) for any function ofA(t). We

also have

Let us take the time-correlation functions

—_— 1(T

A (1)AL(0)= lim ?fo A (t+s)Al(s)ds, (3.1
T—o

(AD)= | H@gatda=[e @) luxo (31D

a dagger indicating the Hermite conjugate. This two-body

correlation is coupled with higher order correlations This is compared with the above to give

A/ (DAL (DALO), A/ (DA, (DA, (DALO), ..., e'* f(a)="f(e"a)="f(a(t)). (3.12

via the nonlinear termo ,(A), as can be seen by substituting For the Hamiltonian systems, we hake=iL =—M, L be-

Eqg. (2.7) into A (t)Al (0). ing the Liouville operator.
T ADE(S) Substituting Eq(3.9) into Eqg. (3.1) gives

We have
An0)--As ()= f a,,--a, Ga(hda (3.2 A/ (DAL(0) m(0)= lim f J a,(t)ga(s)Af(s)dads
in terms of thes-function density{ 17,20 =(a,(t)al), (3.13

where we have defined the ensemble average

ga(t)Eﬁ[A(t)—a]El:[ JA(H-a]. (33
(3.19

. . . cey= P.(a):--
Hence the higher order correlations can be written as () f »(3)

T —_— in terms of the probability density
A, (1) A, (DAL(0)= f a,,-+-a, ga(AL(0)da,

(3.9 P,(a)=g,(s)= lim %JTga(s)ds. (3.195
0

T—x

Therefore, in order to avoid the difficulty of the infinite chain
of higher order correlations, let us consider the time eVOI“Takmg the long-time average of E€8.5), we get
tion of g,(t).

The time evolution ofg,(t) is given by MP, (a)=0. (3.16
J Jd . ; & (1)
e _ o= In the following, A (t) anda,(t) are set so as to b& (t)

t)= A, (1) At =Mg,(1), / . - .
&tga( ) 2 aa/{ ADIAAM —al} 9a(t) =(a,(t))=0. Then the time-correlation function&.13

(3.5  would decay to zero in time as
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(a (t)aly—0 for t—e, (3.17 r(at)=e'**Qu (a), (4.7)

representing the mixing of chaotic orbits in chaotic or turbu-
lent systems. TL.(s)=—2> ({Ar (a,9)}al)[(aa’) mn. (4.9
m

IV. LINEAR STOCHASTIC EQUATIONS . . . A
Thus, first extracting the linear terne'*Puv,(a) from

The evolution equation2.7) do not exhibit the energy e'*y (a) as in Eq.(4.3), and then extracting the linear term
dissipation due to chaos or turbulence explicitly, even thouglyenerated by the time evolution ef* Qv ,(a) as in the sec-
the nonlinear terny ,(a) causes chaos or turbulence. As will ond term of Eq.(4.5), we are left with ther (a,t) of Eq.
be shown in this section, however, the nonlinear terr(a) (4.7, which is completely nonlinear. This,(a,t) is called
can be transformed into the sum of a linear transport ternthe chaotic or turbulent fluctuating force. The memory func-
due to chaos or turbulence and a chaotic or turbulent fluctuton I'’.(s) decays in a macroscopic time, representing
ating force. the loss of memory with respect to the initial conditions, and

Let us take the Hilbert space for functions @&{a,},  brings about the energy dissipation due to the chaotic or
where the inner product df,(a) andf,(a) is defined by the tyrbulent transport. Thus we obtain the linear stochastic
average(f,(a)fi(a)), (---) implying the averagg3.14.  equations4.6), where the frequency matrix2° gives a co-
Then let us introduce the projection of a vect¢a) onto the  herent oscillation in the chaotic motion and the memory
vectora [13]: functionI'’ (t) describes the mixing in the chaotic motion.

The evolution operator of /(a,t) is QA in contrast to
Pf(a)=2 2 <f(a)aL>[<aaT>7l]mnanl (4.1) Eqg. (3.10. Since PQ=P—P2=0, therefore, we have
m n Pr(a,t)=0, ie.,

where(aa') ~! is the inverse of the square matfiéa, a,)}. (r (ahaly=0, (t=0) 4.9
Namely, P is the projection operator which extracts the lin- S EmI ' '
ear part of the operand.

Equation (3.8 gives Aa,=v (a)+J%a)+K,(a), so
that the time evolution of Eq3.10 gives

This is the most important feature of the fluctuating force
r /(a,t). Hence, multiplying Eq(4.6) by aL and taking the
average(- - - ), we obtain

a ()=e"v (a)- 2 That)+K @), 4.2 . _ t
" (@ (Dam =2 (100~ T2 (an(Day) 2 for;n<s>
where EQ.(2.8) has been used. Usin@=1-"7P, we have :
v,(a)=Pv (a)+ Qu,(a). Then the first term of Eq4.2) X(an(t—s)ay)ds. (4.10
can be written as
This is the linear transport equations for the time-correlation

. -’- .
e‘Av/(a)=; iQBnan(t)JretAQv/(a), 4.3 matrix (a(t)a'), so that its Laplace transform takes the form

[13]
wherei QY is the frequency matrix w©
E(w)zf e "“Ya(t)a’)-(aa’)"Mdt,  (4.1D
0
iQ(,)/nE% <U/(a)a:1>[<aaT>_l]mn- (4.9
1
Putting A= QA +PA, we have :i(w—Q°)+F°+F’(w)' (4.12
t
eh=g'Qhy foe(“s)APAeSQAdS, (4.5  wherel'’(w) is the Laplace transform of the memory func-

tion matrix '’ (t) and represents the energy dissipation rate
Sue to the chaotic or turbulent transport. Thus the linear sto-
chastic equation$4.6) are very useful for formulating the
transport and energy dissipation due to chaos or turbulence.
Indeed, an evolution equation of this type has been used as
the basis for the statistical-mechanical formulation of trans-
_ t port and thermal fluctuations near thermal equilibrilt8—
a, (=2 (i0%,-To)ayt)— > f I')(s)ay(t—s)ds 17]. In the following it will turn out that the linear stochastic

" noJo equationg4.6) also give the basis for a stochastic description

which can be proved by checking that both sides are unity
t=0 and their derivatives arde'*. Substituting Eq.(4.5
into the second term of E@4.3) and then substituting it into
Eq. (4.2 leads to

+1(a,t)+K (at)), (4.6)  of chaos and turbulence in dissipative systems far from equi-
' ' librium.
where we have defined Ther ,(a,s) factor of Eq.(4.8) becomes
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({Ar (a,9)}al)= f r,(a,s)M{al P, (a)}da,

=—(r(a,9){Aal}), (4.13

where use has been made d¥1P,(a)=0. Since
(r,(a,s)P{Aa})=0, QAal =0uv! =rl(a,0), we have

({Ar(a,9)}aly=—(r (as)ri(a0). (414

Substituting this into Eq(4.8) gives, in the matrix form

I''(t)=(r(a,t)r'(a,0)-(aa’ 1. (4.15
Then the dissipation raté’ (w) takes the form
F’(w)=j:e‘i“’t(r(a,t)rT(a,OD~<aaT)‘1dt.
(4.19
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where w# *w° ®° being the frequency oK (t). The
power spectrum o8 (t) is given by[12]

| (w)=lim

T—oo

.
{2 ()

1
=5 % = /m(w){amal)+c.c.. (5.4

Let us consider the low frequency components witth
<1l/m(Sw.), so that we havery> 7, and the dissipation
rateI'' (w) may be regarded as a constahHt=I""(w=0).

Then, introducing the coarse graining of macrovariables in

time
AAt)zZ” A (w))e it (5.5

with A (wj)=[a,(®j)]a=a0) and Z{ being the sum over

The physical experiments such as the light scatterlngs ol:bo s with a cutoffw (<1/7,), we obtaln

serve Eq. (4.11) and explore the dissipation rat&®°
+I'"(w). Here Eq.(4.16 gives the fluctuation-dissipation
formula which relates the dissipation rdté(w) to the time-

correlation function of the chaotic or turbulent fluctuating

forcer(a,t).
Thus, in contrast to the evolution equatiq@s7), the evo-
lution equationg4.6) contain the memory functioh’ (t) for

the chaotic or turbulent transport and the corresponding fluc-

tuating forcer(a,t) explicitly. This has been derived by
renormalizing the molecular dissipation rdté by the non-
linear interaction®v ,(a) so as to give the chaotic or tur-
bulent dissipation rat&'’ (w) explicitly [17]. Therefore, Eq.

(4.6) andA (1) =[a,(t) Ja=a(0) may be called the renormal-

ized evolution equations. In this paper, however, these are
referred to as the linear stochastic equations which give a

stochastic description of chaos and turbulence.

V. POWER SPECTRA AND ENTROPY PRODUCTION

Let us suppose that a chaotic or(t) is observed over a
long time interval Gst<T with T> (= 7,), wherery and
7, are the decay times dh(t)a’) and(r(a,t)r(a,0)), re-
spectively. Now let us expanal, (t) in a Fourier series as

a(t)=2"a/(w)e"r, (5.)
where the frequencies are
27| )

wj=?, (j=0,x1,x2,...) (5.2

and EJ-’ is the sum overw;'s with a cutoff o, satisfying
U/ry<w.<1l7, for a microscopic time scale,,. Then the
linear stochastic equatiorid.6) lead, fort> 7y, to

iwa, (w)= 2 {IQ

(o) ag(w)+r (a,0),

(5.3

A/<t>=; Q% AL +IAAD)+1 () +KAAD),
(5.6

where we have defined the dissipative flux

I (A)=- 2 L0 +T A, (5.7

and the fluctuating force (t)=[r (a,t)].= A(0) - It should
be noted that the memory term of E@.6) is reversible
under time reversdal.9), i.e.,

t -t
f F’/n(s)an(t—s)ds—mnf T (s)a(t+s)ds
0 0

t
=— Enfor}n(r)an(t— 7)dr

with T, (= 7)=T,(7), whereasl' ) a,(t) is irreversible,
i.e, T a,(t)— el an(t). This irreversibility arises from

the coarse graining in time introduced in the above. There-

fore, the dissipative flux5.7) is irreversible and contributes
to the entropy production. Thus, instead of E}.12), we
obtain

oA,

> A, ke

> P
/

aA,

= ksz/: {r°,+1, .
(5.8

Namely, the dissipation rat8 ,I',, gives the entropy pro-
duction due to chaos or turbulence.

In the low-frequency casey,> 7,, the fluctuating force
r,(t) is specified by

r()=0, r (Orlt’)=2¢,8(t—t"),

where¢,, is the transport coefficients

(5.9
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* 0 1 O
= (r/(a,t)r;r](a,O))dt:E Ff/m<ama$>.
fo m 510 00 - <U/(a2n> —05 0 0| gq
' <|an|> 0 0 O

Thenr ,(t) may be assumed to be a Gaussian white process.

Thus the Markovian equatiofb.6) has the structure similar whereQ2=(q sing)/(c?). Then Eqs(4.6) and(4.15 give the
to the linear Langevin equation for Brownian motion. Let |inear stochast|c equations

P(a,t) be the probability density thaA(t) takes a value

arounda at timet. Then, the stochastic theory of Markovian q=p, ¢=0a° (6.4)
processes leads to the Fokker-Planck equdtl@h

. t
p=—0Q50—°p— foy’(s)p(t—s)d8+rz(a,t)

1% . /
EP(a,t)=§/: Ja, _zn: {Ian—an—r/n}an—K/(a)

+b cog wt+ ), (6.5
+2 f/n P(a,t). (51D  wherery(a,t)=r3(a,t)=0,(rx(a,t)p)=0,
ﬂ

It would be worth noting two remarks here. y'(s)= —(rz(a,s)rz(a,0)>= v'(—s), (6.6)

(1) Chaos and turbulence in dissipative systems are re- (p?)
lated to the molecular thermal motions through the energy ‘oA
dissipation as a channel, so that, if the molecular thermal r(at)=—e'sing—0fq} (6.7)
motions vanish akg— 0, then the entropy production due to i
chaos or turbulence also vanishes. with Q and A being

(2) Such energy dissipation due to chaos or turbulence is (f(a)q) < (a)p)
not explicitly contained in the usual evolution equations of(a)=f(a)— p—(f(a)), (6.8
(2.7). Therefore, we have to derive an equation, such as Eq. (9% (p?)
(5.6), which contains the dissipative flu%.7) explicitly by

introducing the renormalization and the coarse graining in d
time. A= p——{smq+y p— bcos¢}—+w 9 (6.9
VI. CHAOS-INDUCED FRICTION ' (w) Equation(4.16) givesI' ) (»)=7y'(®)8,25,,, Where
Let us take the forced damped pendul(@rl), for which 1
a;=q, a,=p, az=¢=w’t+ ¢y andq is set to be— = v (w)= e '“Yry(a,t)ry(a,0)dt.  (6.10
<< with mod 2. Then the three terms of E(R.7) take ( %y Jo
he f
the form This is the chaos-induced friction coefficient. Then Eg.
D 0 (4.12 leads to
i 0
—| —sinq Oqy=| —7P —
v(a) 0 . J7(@) 0 ! I‘”*—f/m(“") |2 Q? n*—«nm(w)

=8,m= {7’ + ¥ (0)} 8,25 ym(w). (6.1

0
Sincei 0%, =6,16,,— 038,68, this leads to
K(a)=| PCOSP | 6.1)
w® lwEfw) = Egpw)=0, (6.12
=i 2= =110+ =
where (q)=(sing)=0, (p)=0. Now, applying Eqs(4.6), 0Bz )+ QoRadw) =1y +y (w)}HZZ(w)(IG_lg)
(4.15, and (5.4), let us explore the chaos-induced friction
and the power spectra of the orbéét). This is solved to give

0

Under time reversal— —t, q—q, »°— —°, we have

p——p, ¢—¢. Then we obtaifqp)=(p¢)=(4»q)=0 so 1 (>
that "ap=per= (0 Ezz(w)f—zf e '“Yp(t)p(0))dt
p%)Jo
(aaly=(la/?d/m. (6.2 "
= 2 2 0 ’ ! (614)
Since(p sing)=(¢sing)=0, we have (0= Q) +o{y"+ 7' (o)}
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andElz(w) = Ezz(w)/i w.
For ay(w)=p(w), the power spectrunb.4) becomes

2
p(w)_<|o>

(6.195

{Ew)+c.cl,

_(p?) w*{y°+Rey’ ()}
T {(0®~ Q) +wImy (0)}?+0¥y’+Rey (0)}?’
(6.16
wherew# *= w°. Fora;(w)=q(w)=p(w)/io,
Iq(w)z—zlp(w). (6.17
w

PHYSICAL REVIEW &3 026302

(r (U, 9)r 1 (u,0))

"(k,s)= , 7.2
e uul®) "2
rak(uvt)EetQAvak(u) (73)
with @ and A being
f(uyul,)
Qf ()= f(u) - 22 O e (7.4
P <|uﬂp|>
J
Azz ;,{vak(u)_yokzuak_'—Kak}u_ (75)
@ ak

Thus the renormalization of° by the inertial termv . (u)
leads to the memory function’ (k,s) and the turbulent fluc-

Thus it turns out that the structure of the power spectra of théating forcer 4 (u, t)

orbitsa(t) is determined by the chaos-induced friction coef-

ficient y' (w).
In the case of low frequencigs|<1/7,(<»°), we may
neglect thew dependence of the friction coefficient (w).

Then the power spectri@.16 and (6.17) are characterized

by Q, and y=v°+ 3’ (w=0) with Imy’'=0, and become

similar to those of the Brownian motion under an elastic

force of frequency(), [12]. Indeed, using Eq(5.11) with
E,n=E8,200,(=7'(p?)) leads to the Kramers equation

d
sPap=- q|0+—{9 6a+(¥°+y)p

2

J
—bcoq w’t+ ¢0)}+§[9—p2 P(q,p,t).

(6.18

Further in the low-frequency casg,> 7, , Eq.(5.8) leads
to the entropy production

= aA, ,
S=ke| 2 Ja-| =ke(¥*+ "), (6.19
/ /

wherey’'=9'(w=0). We havey's ° for a strong chaos.

VII. TURBULENT VISCOSITY v»'(k,®)

Let us take 8 turbulence in an incompressible fluid gov-

erned by the Navier-Stokes equati@h3), which is assumed
to be statistically homogeneous and isotropic.

Then Egs.(4.6) and (4.15 lead to the linear stochastic

equations

. t
uak(t)z—vokzuak(t)—f v'(K,s)k?u (t—s)ds
0
+rak(urt)+Kak! (71)

where(r ,(u,t)uf ) =0,

Since(r 4 (u,t)ul,)=0, Eq.(7.1) leads to

1 ©
Eak(w)E 2 j e_lwt<uak(t)u2k(o)>dt
<|uak| > 0
= ! (7.9
iw+1k2+ v’ (k,w)k?’ '
wherev’ (k,w) is the Laplace transform of E7.2),
v (Kw)= ;f “otr (utrt (u,0))dt.
k*(Juad?) Jo
(7.7)

Since v’ (k,w)k? represents the energy dissipation rate due
to turbulence,v’ (k,w) is the turbulent viscosity, and Eq.
(7.7 gives the fluctuation-dissipation formula which relates
the turbulent viscosity’ (k,w) to the time-correlation func-
tion of the fluctuating force .

In the case of small wave numbeks<k, and low fre-
quencies w|<1/7,(<v°k?) where 7y, (k)> 7,(k), Eq. (5.8)
gives the entropy production

's=3kB§k‘,”{v°+v'(k)}k2, (7.9
wherev’(k)=v'(k,w=0), and
a cutoffk (<k;).

Next let us take isotropic, fully developed turbulence and
consider thék dependence of the turbulent viscosity(k, )
in the inertial subrange, where we can neglect the molecular
viscosity term and the external force so that the Navier-
Stokes equatiori2.3) is invariant under a scale transforma-
tion [21,22. Let us assume that the characteristic turnover
time t, of eddies of size”=1/k is estimated as

fo Lk
K" Au(”) :

« is the sum ovek’s with

(7.9

with an exponeng, whereAu(/) is the characteristic turn-
over velocity of the eddies. The linear stochastic equation
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(7.1) which is equivalent to the Navier-Stokes equation is  VIIl. EXTERNAL NOISE EFFECT AND NONLINEAR
also invariant under the scale transformation. This suggests DISSIPATIVE TERM J°(A)

that the following scaling relations hold: It often occurs that an external noige (t) is added so

that the evolution equatiof?.7) becomes stochastic:
ak(t)

]
k], (7.10 )
“lk A, (1) =S, (A1) +R(1), (8.1)

k where the systematic part consists of three terms
ra()=k 7% P — tk?], (7.10
S, (A)=v ,(A)+JI%A)+K (A). (8.2

where 6 is a certain exponent, and,(x,y) andr ,(x,y) are  In the following, we further assume that the dissipative term
universal functions ofx andy. If we use the expressmn J/(A) is generally nonlinear in contrast to E(.8), and
(Jug?)~k™374®, then Eq. (7.10 leads to 6=3[3  then we will show how the foregoing theory must be ex-
+¢(2)]. Since the average kinetic energy of the eddies isended.
estimated a$21,22 The external noiséR, (t) is assumed to be a Gaussian
white process, being specified by
([Au()1A)~k @ (7.12
(RA1);by=0, (RADRI(t);b)=2D,md(t—t"),
with £(2)=2— p,3 in terms of the intermittency exponent (8.3
uq of orderq, Eq. (7.9) leads toz=1-73¢(2). Putting
=u,, We haveu,,s=—u/9 for the log-normal theory and
o= — ul3 for the 8 model[21]. Therefore we have

G(1)gs(0)
Z:§+%M2/3- (7.13 (G(t);b)=——

where (- --;b) denotes the conditional average with the
value ofA being fixedb att=0:

, (8.43
95(0)

Substituting Eqs(7.10 and(7.11) into Eq.(7.7), we obtain —_ 1(7
9 Eqs(7.10 (719 a.(7.7) G(1)gp(0)=lim ?f G(t+s)gp(s)ds (8.4b

T—ooo 0
’ k, :k—2+20f —iwtk—20+22 th dt
vikw) 0 9(tke) with gy(S)=S[A(S)—b]. The conditional probability den-
sity that, given a valud at the initial timet=0, one finds

=k (wk™?), (7.14 A(t) in the range &,a+da) at a later timet, is given by
wheref(x) is a unique function ok, being independent of P(a,t|b,0)=(ga.(t);b). (8.5
the coordinate indexx because of the isotropic nature of
turbulence. This leads to’ (k,w) =k~ #f(wk™?) with Then it is well known that the stochastic theory of Markov-

ian processes leads to

4 1
B=2—27=5+ 5|ua. (7.19 d
3 2728 Zp@tb,0=| - -—s,(a)
Vi aa/

If one neglects the intermittency correctign,; in £(2), then

this agrees with the classical resglt=3 [8,9]. ?

+2 > =D, m|P(a,t|b,0)

It would be worth mentioning the renormalization-group 7 ‘m ga,oa
theory of turbulence which has been developed first by For- '
ster, Nelson, and Stephen for the Navier-Stokes equation =MP(a,t|b,0), (8.6)

[23]. In this theory the molecular viscosity® is renormal-

ized by the hydrodynam|c modas, ek by e||m|nat|ng the W|th the FOkker P|aan Opera'[OM [12] The constant
modesu,, with K=k>K'= K/e/(/> 1) successively start- D, m(=D,) represents the intensity of the external noise
ing from K=k, and deriving a renormalized equation for R/(t).

<k.. This has been done approximately by means of a dia- SinceA, (t)=fa,g,(t)da, the stochastic equatiof8.1)
grammatic perturbation theory. In order to obtain the turbuleads to

lent viscosity, however, the elimination of the hydrodynamic

modes is not necessary. Indeed, the renormalizatior by i _

the nonlinear interactions ,(u) is sufficient, and this has ﬂtga(t)_Mga(t)+Fa(t)' 8.7
been shown exactly in Sec. 1V, leading to the linear stochas-

tic equation(7.1) and the turbulent viscosit{7.7). whereF,(t) is the master fluctuating force
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J . t
Fa(t)E—Z E{R/(t)é‘(A(O)—a)}, (8.9 a(t)={iQ°—F°}-a(t)—fOF’(s)-a(t—s)ds+r(a,t)

satisfying +K(a(t)), (8.19

where, as the extension of Eq4.7) and(4.15),

F.(1):b)=0, F.hda=R,(1). (8.9
(Fa(t)) fa/ (Nda=R.1). @9 f(a,t)=e9Qfp(a)+I%a)}, (8.16

This will be shown in the Appendix. Indeed, the Fokker- L ~ o1
Planck equatiort8.6) is derived from Eq(8.7) by taking the I"(s)=(r(a,s)r'(a))-(aa’) "~ (8.17)
conditional averagé- - -;b) and using Eqs(8.8) and (8.9). _
Equation(8.1) is also derived from Eq(8.7). Thus any in- and themth component of the vectar(a) is given by
formation about the dynamics &(t) can be derived from
Eq. (8.7). Hence Eq(8.7) is called themaster equation
Multiplying the 1st equation of Eq(8.9) by a function
f(b) and integrating oveib, we obtainF,(t)f(A(0))=0
=R, (1)f(A(0)). Namely, the external noiseR,(t) and =Qfvm(a)+3%(a)}
F4(t) are orthogonal to any function &(0) in contrast to
that in Sec. IV noise is orthogonal only to a linear function of
A(0). This is because the systematic pgr(a) is nonlinear
in contrast to Eq(4.6).

Integrating Eq.(8.7), and substituting its result into |t should be noted that Eqé8.16 and (8.17 reduce to Egs.

Tm(@)=-0 M{anP, ()}, (8.18

1
P.(a)

-20> Dmni,rln P,(a). (8.19
n da

n

A (t)=Ja,ga(t)da yield (4.7) and(4.15) if and only if J°(a) is linear and there is no
. external noiséd ,,,=0.
. T _ . .
A= | at 0 da+f ja t—s)F.(s)dad Sln'ce<r(a,t)a')—0, Eq.(§.15) gives a linear transport
At f /(1)9a(0) 0 2 JFa(s) S equation for the time-correlation matrzjm(t)a*), so that Eq.

(8.10 (8.12 leads to

wherea, (t)=e'*a, similarly to Eg.(3.10 but with © o
AY g yto Eq.(3-10 E(w)Ef e 1“A(H)AT(0) - [AAT]1dt
0

d 92
A=Y (@5 +3 X Dm——. (81D .

da, da,, =
(- Q)+ T+ T (w)

(8.20

It should be noted that the time evolution @f(t) is deter-
ministic, although that oA ,(t) is stochastic due to the pres- with the energy dissipation rate
ence of the second term of E@.10.

Let us consider the time-correlation functiof®l). Since

— L ) . ()= | e ot tri(a))-(aa’y"'dt. (8.2

Fa(s)An,(0)=0, substituting Eq(8.10 into Eq. (3.1 gives (@) fo e (r@ayri(a) (aa) @29

—_— This is the extension of the fluctuation-dissipation formula

Ty — Ty t

A/(t)Am(O)—<a/(t)am>—f P.(a)a,(Dayda (4.16), and shows how the external noises and nonlinearity
(8.12 of J%a) modify the transport and energy dissipation.

o TakingA (t) of Eq.(8.10 and using Eq(8.15 for a,(t),

similarly to Eq. (3.13, where P,(a)=0.(S) we obtain the linear stochastic equation

=lim._..P(a,t|b,0) is the steady probability density and sat-

isfiesMP, (a)=0. . 0 0 t,
Since Aa,=S,(a), using the projection operatd#.1) A)={iQ"-T }-A(t)—fol“ (s)-A(t—s)ds+f(t)
leads to
+K(A(1)), (8.22

a(t)={in°-T% a(t) +e* Qfv(a)+I%a)} +K(a(t)),
(8.13  wheref(t) is the renormalized fluctuating force

C0
wherei Q" is given by Eq.(4.4) and f(t)ER(t)Jrf f(a.t)g,(0)da

I°=—(J%a)a'y-(aah) 1. (8.14 t
Substituting Eq(4.5) into Eq.(8.13 gives " fof r(at=s)Fa(s)dads .23
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Equation(8.22 is equivalent to Eq(8.1) but contains the This is integrated to give
memory functionl’’(s) and chaotic or turbulent fluctuating
forcer(a,t) explicitly in contrast to Eq(8.1). ga(t) =exp;

fotﬂ(a,S)ds ga(0)

IX. SHORT SUMMARY

=J gn(0)Up(t) 5(a—b)db, (A2)
The particular intention of this paper has been to derive

the linear stochastic equatiol4.6) for chaos or turbulence \yhere we defined

from the nonlinear evolution equation®.7), where the

Laplace transfornt’’ (w) of the memory functiori4.8) gives Up(t)=exp_
the chaotic or turbulent transport coefficients and their en-

ergy dissipation rates. This has been done by using the P
projection-operator method which transforms the nonlinear L(b,H)=> {S,(b)+R(t)}=—. (A3)
term Qu(a) of Eq. (2.7) into the sum of a linear transport ¢ b,

term and a nonlinear fluctuating forada,t). Indeed this
amounts to the renormalization of the molecular transport
termJ°(a) by the nonlinear tern@Qu(a). Thus the nonlinear
evolution equation$2.7) have been transformed into the lin-
ear stochastic equatiort4.6) which are useful for construct-

ftL(b,s)ds ,
0

Equation(A2) leads to

J 17
200= [ 00| 20 sta-bidb. (a4

ing a stochastic description of chaos and turbulence. To treat this, let us introduce the projection operdtof]
Thus it has turned out that chaos and turbulence bring
about various transport processes whose dissipation rates 7’zG(t):f (G(1);b)gy(0)db, (A5)

I''(w) are given by the fluctuaton-dissipaton formal6
in terms of the chaotic or turbulent fluctuating forads,t). where (G(t);b) is the conditional averagé8.43. Using
For the low frequency components of macrovarial#ieéw) 9,=1-"7P,, let us define
with |w|<1/7, , the dissipation rateB’ (w) may be regarded B

as constantd”’'=T"'(w=0). Then the coarse graining of Uy(t)=exp_

t
f 9,L(b,s)ds|. (AB)
macrovariables in time, given by_Eqs.S), has enabled us to 0

introduce the entropy productio due to chaos or turbu- This leads to the operator identity

lence explicitly, as shown in Eq5.8). ‘
Then the Laplace transform of the time-correlation func- Ub(t):Db(t)+J Ub(s)PZL(b,s)[Ob(s)]_lﬁb(t)ds,

tions of macrovariable$4.11) and the power spectréb.4) 0

can be written in terms of the dissipation rateq ), indi- (A7)

cating their physical structures explicitly, as shown in the .. . e -
case of forced damped pendulum. The fluctuation-dissipatioWhICh 's a generalization of Eg4.5). Therefore, substituting

formula (4.16 for the dissipation rate§’(w) give exact (9/3)Up() = Up() PoL(0,) + Up(1) QL (b,1) into Eq

. . - A4 ing Eq(A7) for th i
expressions for the chaotic or turbulent transport coeffluents(. ) and using Eq(A7) for the second term, we obtain

This has been applied to the chaos-induced friction coeffi- i :f ~
cienty' (w) in a forced damped pendulum and the turbulent 4t 9a(V)= | 9p(0)| Un(O)PL (b, 1)+ Up(1) QL. (b, 1)
viscosity v’ (k,w) in fully developed turbulence. .

If an external noisd? (t) is added as in Eq8.1), then it +f
has turned out that Eq&4.16) and(4.6) are extended to the oUb(S)PZL(b’S)
fluctuation-dissipation formulé8.21) and the linear stochas-
tic equation(8.22, respectively. Thus it turns out that the <10 —17 _
stochastic motion of chaos and turbulence can be treated by [Un(9)] Up(1) QL (b,)ds| (2~ b)db.
extending the concept of the fluctuating forces of the Brown-
ian motion, and the linear stochastic equatiqdss) and
(8.22 which are non-Markovian give the basis for the sto- ere sincaR.(t):b)=0. we obtain
chastic approach to chaos and turbulence. This is also useft‘l ’ ARA1):D)=0,
for clarifying what transport processes are brought about by
chaos and turbulence.

(A8)

d
P,L(b,t)5(a—b)= —Z/ &Tl/[s/(a)a(a— b)], (A9)

J
APPENDIX: DERIVATION OF EQ. (8.7 Q,L(b,t)é(a—b)= —Z K[R/(t)g(a_b)]'
%
The stochastic equatio8.1) leads to (A10)
J J i
hd __\ 2 _ The three terms of EGA8) can be transformed into the three
= + = .
&tga(t) Z 53/[{8/(61) RADIG(V]=2(a,DG(1) terms of Eq.(8.7) as follows. Indeed the first term of Eq.

(A1) (A8) can be written as
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J
—Z/ Ja, [S/(@5(0], (A11)

where use has been made of E42). The second term of
Eq. (A8) takes the form

—E fgb(O)Ub(t HRA(t)8(a— b)}db}

=2

] -
78, f 9(0) 5(a— b){Ub(t)R/(t)}db}

=-2 —[R/

)8a(0)]=F4(t). (A12)

The third term of Eq(A8) can be written as

PHYSICAL REVIEW &3 026302

ffgb(O)Ub(s)Pz m(S)

m 073-/(?

x[Ub(s)]‘lR/(t)ﬁ(a—b)dsdb

f f 9(0)Up(8)PRL(S)RAL)

7 ‘m ga,oal,
X 8(a—hb)dsdh
2

J
=> 2 [D/mgam]

(A13)

where use has been made of E@3) and (A2). The sub-
stitution of Egs.(A11)—(A13) into Eq. (A8) gives Eq.(8.7).
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