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Transport and entropy production due to chaos or turbulence
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A projection-operator method is developed for the statistical-mechanical formulation of chaotic or turbulent
transport, such as chaos-induced friction in a forced damped pendulum and turbulent viscosity in a turbulent
fluid. Then the nonlinear deterministic equations of motion for these dynamical systems are transformed into
linear stochastic equations with chaotic or turbulent fluctuating forces. This leads to a fluctuation-dissipation
formula which relates the chaotic or turbulent transport coefficients to the time correlation of the fluctuating
forces. Applying this theory to the forced damped pendulum, we explore the chaos-induced friction and the
power spectra of chaotic orbits. Applying it to the fluid turbulence governed by the Navier-Stokes equation, we
find that the turbulent viscosity in the inertial subrange depends on wave numberk as k2b with b5
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2 um2/3u, mq being the intermittency exponent of orderq.
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I. INTRODUCTION

Recently much attention has been paid to the study
various spatiotemporal phenomena observed far from e
librium @1–4#. Particularly, the self-organized formation o
macroscopic structures and sustained limit cycle oscillati
are their typical examples and are called dissipative st
tures @4#. They are observed not only in laboratory expe
ments but also in the geophysics scale. The emergenc
dissipative structures are controlled by changing the n
equilibrium parameter, the amount of energy injection rate
the system under consideration. It is not clarified yet, ho
ever, what physical processes underlie the dissipative st
tures when chaos or turbulence exists.

For certain ranges of nonequilibrium parameter, syste
show chaotic or turbulent behaviors@4–6#. Chaos or turbu-
lence is a very general phenomenon. It exists in quite w
ranges of nonlinear dissipative systems far from equilibriu
and exhibits various transport processes such as ch
induced friction in a forced damped pendulum and turbul
viscosity in a turbulent fluid@7–9#. Their transport coeffi-
cients are much larger than the corresponding molec
transport coefficients, since their mixing lengths are mu
larger than the molecular mixing lengths such as the m
free paths of molecules in gases.

The transport processes are accompanied by the dis
tion of the macroscopic kinetic energy into molecular th
mal motions. This energy dissipation due to chaos or tur
lence also brings about an entropy production which is m
larger than that due to the molecular transport.

One of recent trends in the study of turbulence is
dynamical systems approach@10,11#. Therefore, it would be
an interesting question whether we can formulate the cha
or turbulent transport and energy dissipation in terms of
evolution equations of the system by extending the statist
mechanics of nonequilibrium systems near thermal equ
rium.
1063-651X/2001/63~2!/026302~11!/$15.00 63 0263
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Thus it turns out that, in order to understand vario
physical processes in chaos and turbulence, the follow
must be studied from the statistical-mechanical point
view.

~1! The statistical properties of chaotic orbits and th
fluctuations, such as their power spectra and time-correla
functions, where the variables of the chaotic orbits are
garded as the stochastic processes@12#.

~2! The statistical properties characterizing the geome
cal phase-space structures of chaos, such as the fluctu
spectra of local dimension and local expansion rate of nea
orbits @4#.

~3! The statistical properties of the chaotic or turbule
transport, such as the chaos-induced friction and the tu
lent viscosity, and their energy dissipation.

~4! The stochastic approach to chaos and turbulence.
The main purpose of this paper is to develop a gene

scheme for the statistical-mechanical formulation of the c
otic or turbulent transport and the stochastic approach
chaos and turbulence. This will be done by extending
statistical-mechanical formulation of the molecular transp
near thermal equilibrium in terms of the molecular fluctu
ing force, which is often known as the theory of generaliz
Brownian motions@13–15#.

Then the projection-operator method will be applied
the nonlinear dissipative systems far from equilibrium,
that the nonlinear evolution equations such as the equat
of motion for the forced damped pendulum and the Navi
Stokes equation for fluid flow are transformed into line
stochastic equations with nonlinear chaotic or turbulent fl
tuating forces, which are, however, non-Markovian. Th
amounts to the renormalization of the molecular transp
coefficients by the nonlinear interactions which cause ch
or turbulence@16,17#. This also gives a generalization o
Iwayama-Okamoto’s theory@18# which explores the eddy
viscosity in a two-dimensional inviscid fluid.

Thus we shall obtain a general scheme for the formulat
©2001 The American Physical Society02-1
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of the chaotic or turbulent transport in terms of chaotic
turbulent fluctuating forces. This will give a fluctuation
dissipation formula for the chaotic or turbulent transport
dissipative systems far from equilibrium. In order to sho
the structure of the formulation explicitly, we shall apply th
formulation to the chaos-induced friction in a forced damp
pendulum and the turbulent viscosity in a turbulent fluid.

This paper is organized as follows. In Sec. II, we summ
rize the main features of the evolution equations for dissi
tive systems, and introduce the long-time average of the
of entropy production. In Sec. III, the evolution of the tim
correlation of macrovariables is shown to be governed b
master equation for thed-function density of macrovariables
In Sec. IV, we develop a general scheme for renormaliz
the molecular transport by the nonlinear interactions so a
obtain the chaotic or turbulent transport explicitly. In Sec.
the power spectra of chaotic orbits and the entropy prod
tion due to chaos or turbulence are investigated.

As the application, in Sec. VI we take the forced damp
pendulum and explore its chaos-induced friction coefficie
power spectra and entropy production. In Sec. VII, we ta
homogeneous turbulence in an incompressible fluid g
erned by the Navier-Stokes equation, and explore the tu
lent viscosity in terms of a turbulent fluctuating force and
scaling exponent in the inertial subrange. In Sec. VIII,
add an external noise to a system whose dissipative ter
nonlinear, and show how the foregoing scheme must be
tended. Section IX is devoted to a brief summary.

II. EVOLUTION EQUATIONS FOR DISSIPATIVE
SYSTEMS

Let us consider the dissipative dynamical systems. O
example is the periodically forced pendulum whose evo
tion equations for angleq and angular velocityp take the
form @4#

S q̇

ṗ

ḟ
D 5S p

2sinq2g0p1b cosf

v0 D , ~2.1!

where g0 is the molecular friction coefficient andb is the
amplitude of the driving force with angular frequencyv0

and phasef5v0t1f0. The nonlinear term sinq causes
chaos whenb increases beyond a critical value. The avera
rate of volume contraction in the phase space (q,p,f) is
given by

l (d)5
]q̇

]q
1

] ṗ

]p
1

]ḟ

]f
52g0. ~2.2!

Another example is the Navier-Stokes equation for
Fourier components of local fluid velocity uk
[(uxk ,uyk ,uzk) with wave vector k(k,kc;103 cm21),
which takes the form@7#

u̇ak5vak~u!2n0k2uak1Kak ~2.3!
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for incompressible fluids, wherevak(u) is the inertial term

vak~u![(
b,g

( 8
p

Vabg~k!ubpugk2p , ~2.4!

Vabg~k![2
i

2
$kbDag~k!1kgDab~k!% ~2.5!

with Dag(k)[dag2(kakg /k2). Here(p8 is the sum overp’s
with a cutoff kc(p,kc), n0 is the kinematic molecular vis
cosity, andKak is a steady external force. The inertial ter
vak(u) represents the nonlinear interactions between hyd
dynamic modes and causes turbulence when the Reyn
number increases beyond a critical value. The average ra
phase-space volume contraction is given by

l (d)5(
a

( 8
k

]u̇ak

]uak
523( 8

k
n0k2, ~2.6!

where the bar means the long-time average.
It turns out from Eqs.~2.1! and ~2.3! that the evolution

equations for a complete set of macrovariablesA(t)
[$Al (t)%,(l 51,2, . . . ) consist of three terms

Ȧl ~ t !5v l „A~ t !…1Jl
0
„A~ t !…1K l „A~ t !…, ~2.7!

where v l (A) is a nonlinear reversible term which caus
chaos or turbulence,Jl

0 (A) is a linear irreversible term

Jl
0 ~A!52(

n
G l n

0 An , ~2.8!

andK l (t)[K l „A(t)… is a periodic external force with a fre
quencyv0. The matrixG l n

0 represents the average rate
energy dissipation due to the molecular transport, such ag0

of Eq. ~2.1! andn0k2 of Eq. ~2.3!.
Under time reversalt→2t, Al (t)→e l Al (t), (e l 511

or 21), v0→2v0, we have

Ȧl ~ t !→2e l Ȧl ~ t !, v l ~A!→2e l v l ~A!,

Jl
0 ~A!→e l Jl

0 ~A!, K l ~A!→2e l K l ~A!. ~2.9!

Therefore, if we neglect the termJl
0 (A), then the evolution

equations~2.7! are invariant under time reversal. In oth
words, the termsv l (A) and K l (A) are reversible, wherea
the termJl

0 (A) is irreversible. This irreversible term bring
about the phase-space volume contraction

l (d)5(
l

]Ȧl

]Al

5(
l

]Jl
0

]Al

52(
l

G l l
0 . ~2.10!

This irreversibility arises from the molecular transport su
asg0 andn0, which brings about the dissipation of the ma
roscopic energy into microscopic thermal motions, i.e.,
conversion of the macroscopic energy into heat. Its aver
rate of energy dissipation is given byul (d)u5( l G l l

0 .
The physical quantity which represents this energy dis

pation is the entropy production which is given in the fo
2-2
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lowing manner. Let us take a statistical ensemble of syst
in the phase space spanned by$Al %, and denote their densit
by w(A). Let us consider the time evolution ofw„A(t)…
along the orbitA(t). The conservation of systems leads
the continuity equation]w/]t52( l (]/]Al )wȦl . Hence,
along the orbitA(t), we have

d

dt
ln w„A~ t !…[

1

w F ]w

]t
1(

l
Ȧl

]w

]Al
G52(

l

]Ȧl

]Al

.

~2.11!

Then Boltzmann’s entropyS(A)5kB ln w(A) leads to the av-
erage rate of entropy production@19#

S̄̇5kBU(
l

]Ȧl

]Al
U5kBU(

l

]Jl
0

]Al
U5kB(

l
G l l

0 , ~2.12!

kB being the Boltzmann constant. Therefore,S̄̇5kBul (d)u. It
should be noted, however, that this does not contain the
tropy production due to chaos or turbulence.

III. TIME CORRELATIONS OF MACROVARIABLES

Let us take the time-correlation functions

Al ~ t !Am
† ~0![ lim

T→`

1

TE0

T

Al ~ t1s!Am
† ~s!ds, ~3.1!

a dagger indicating the Hermite conjugate. This two-bo
correlation is coupled with higher order correlations

Al 1
~ t !Al 2

~ t !Am
† ~0!, Al 1

~ t !Al 2
~ t !Al 3

~ t !Am
† ~0!, . . . ,

via the nonlinear termv l (A), as can be seen by substitutin

Eq. ~2.7! into Ȧl (t)Am
† (0).

We have

Al 1
~ t !•••Al n

~ t !5E al 1
•••al n

ga~ t !da ~3.2!

in terms of thed-function density@17,20#

ga~ t ![d@A~ t !2a#[)
l

d@Al ~ t !2al #. ~3.3!

Hence the higher order correlations can be written as

Al 1
~ t !•••Al n

~ t !Am
† ~0!5E al 1

•••al n
ga~ t !Am

† ~0!da.

~3.4!

Therefore, in order to avoid the difficulty of the infinite cha
of higher order correlations, let us consider the time evo
tion of ga(t).

The time evolution ofga(t) is given by

]

]t
ga~ t !52(

l

]

]al
$Ȧl ~ t !d@A~ t !2a#%5Mga~ t !,

~3.5!
02630
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where substituting Eq.~2.7! gives the operator

M[2(
l

]

]al
$v l ~a!1Jl

0 ~a!1K l ~a!%. ~3.6!

This is integrated to give

ga~ t !5exp@ tM #ga~0!. ~3.7!

It is convenient to introduce the operator

L[(
l

$v l ~a!1Jl
0 ~a!1K l ~a!%

]

]al

, ~3.8!

which is conjugate toM. Then Eq.~3.2! gives

Al ~ t !5E al $etMga~0!%da5E al ~ t !ga~0!da, ~3.9!

where the partial integration gives@17#

al ~ t ![exp@ tL#al . ~3.10!

SinceAl (t)5@al (t)#a5A(0) from Eq. ~3.9!, the time evolu-
tion of al (t) coincides with that ofAl (t). Therefore, we
havef „A(t)…5@ f „a(t)…#a5A(0) for any function ofA(t). We
also have

f „A~ t !…5E f ~a!ga~ t !da5@etL f ~a!#a5A(0) . ~3.11!

This is compared with the above to give

etL f ~a!5 f ~etLa!5 f „a~ t !…. ~3.12!

For the Hamiltonian systems, we haveL5 iL 52M , L be-
ing the Liouville operator.

Substituting Eq.~3.9! into Eq. ~3.1! gives

Al ~ t !Am
† ~0!5 lim

T→`

1

TE0

TE al ~ t !ga~s!Am
† ~s!dads

5^al ~ t !am
† &, ~3.13!

where we have defined the ensemble average

^•••&[E P* ~a!•••da ~3.14!

in terms of the probability density

P* ~a![ga~s![ lim
T→`

1

TE0

T

ga~s!ds. ~3.15!

Taking the long-time average of Eq.~3.5!, we get

M P* ~a!50. ~3.16!

In the following, Al (t) andal (t) are set so as to beAl (t)
5^al (t)&50. Then the time-correlation functions~3.13!
would decay to zero in time as
2-3
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^al ~ t !am
† &→0 for t→`, ~3.17!

representing the mixing of chaotic orbits in chaotic or turb
lent systems.

IV. LINEAR STOCHASTIC EQUATIONS

The evolution equations~2.7! do not exhibit the energy
dissipation due to chaos or turbulence explicitly, even thou
the nonlinear termv l (a) causes chaos or turbulence. As w
be shown in this section, however, the nonlinear termv l (a)
can be transformed into the sum of a linear transport te
due to chaos or turbulence and a chaotic or turbulent flu
ating force.

Let us take the Hilbert space for functions ofa5$al %,
where the inner product off 1(a) and f 2(a) is defined by the
average^ f 1(a) f 2

†(a)&, ^•••& implying the average~3.14!.
Then let us introduce the projection of a vectorf (a) onto the
vectora @13#:

Pf ~a!5(
m

(
n

^ f ~a!am
† &@^aa†&21#mnan , ~4.1!

where^aa†&21 is the inverse of the square matrix$^al am
† &%.

Namely,P is the projection operator which extracts the li
ear part of the operand.

Equation ~3.8! gives Lal 5v l (a)1Jl
0 (a)1K l (a), so

that the time evolution of Eq.~3.10! gives

ȧl ~ t !5etLv l ~a!2(
n

G l n
0 an~ t !1K l „a~ t !…, ~4.2!

where Eq.~2.8! has been used. UsingQ512P, we have
v l (a)5Pv l (a)1Qv l (a). Then the first term of Eq.~4.2!
can be written as

etLv l ~a!5(
n

iV l n
0 an~ t !1etLQv l ~a!, ~4.3!

whereiV0 is the frequency matrix

iV l n
0 [(

m
^v l ~a!am

† &@^aa†&21#mn . ~4.4!

PuttingL5QL1PL, we have

etL5etQL1E
0

t

e(t2s)LPLesQLds, ~4.5!

which can be proved by checking that both sides are unit
t50 and their derivatives areLetL. Substituting Eq.~4.5!
into the second term of Eq.~4.3! and then substituting it into
Eq. ~4.2! leads to

ȧl ~ t !5(
n

~ iV l n
0 2G l n

0 !an~ t !2(
n
E

0

t

G l n8 ~s!an~ t2s!ds

1r l ~a,t !1K l „a~ t !…, ~4.6!

where we have defined
02630
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r l ~a,t ![etQLQv l ~a!, ~4.7!

G l n8 ~s![2(
m

^$Lr l ~a,s!%am
† &@^aa†&21#mn . ~4.8!

Thus, first extracting the linear termetLPv l (a) from
etLv l (a) as in Eq.~4.3!, and then extracting the linear term
generated by the time evolution ofetLQv l (a) as in the sec-
ond term of Eq.~4.5!, we are left with ther l (a,t) of Eq.
~4.7!, which is completely nonlinear. Thisr l (a,t) is called
the chaotic or turbulent fluctuating force. The memory fun
tion G l n8 (s) decays in a macroscopic timet r , representing
the loss of memory with respect to the initial conditions, a
brings about the energy dissipation due to the chaotic
turbulent transport. Thus we obtain the linear stocha
equations~4.6!, where the frequency matrixiV0 gives a co-
herent oscillation in the chaotic motion and the memo
function G8(t) describes the mixing in the chaotic motion

The evolution operator ofr l (a,t) is QL in contrast to
Eq. ~3.10!. Since PQ5P2P 250, therefore, we have
Pr l (a,t)50, i.e.,

^r l ~a,t !am
† &50, ~ t>0!. ~4.9!

This is the most important feature of the fluctuating for
r l (a,t). Hence, multiplying Eq.~4.6! by am

† and taking the
averagê •••&, we obtain

^ȧl ~ t !am
† &5(

n
~ iV l n

0 2G l n
0 !^an~ t !am

† &2(
n
E

0

t

G l n8 ~s!

3^an~ t2s!am
† &ds. ~4.10!

This is the linear transport equations for the time-correlat
matrix ^a(t)a†&, so that its Laplace transform takes the for
@13#

J~v![E
0

`

e2 ivt^a~ t !a†&•^aa†&21dt, ~4.11!

5
1

i ~v2V0!1G01G8~v!
, ~4.12!

whereG8(v) is the Laplace transform of the memory fun
tion matrix G8(t) and represents the energy dissipation r
due to the chaotic or turbulent transport. Thus the linear s
chastic equations~4.6! are very useful for formulating the
transport and energy dissipation due to chaos or turbule
Indeed, an evolution equation of this type has been use
the basis for the statistical-mechanical formulation of tra
port and thermal fluctuations near thermal equilibrium@13–
17#. In the following it will turn out that the linear stochasti
equations~4.6! also give the basis for a stochastic descripti
of chaos and turbulence in dissipative systems far from e
librium.

The r l (a,s) factor of Eq.~4.8! becomes
2-4
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^$Lr l ~a,s!%am
† &5E r l ~a,s!M $am

† P* ~a!%da,

52^r l ~a,s!$Lam
† %&, ~4.13!

where use has been made ofM P* (a)50. Since
^r l (a,s)P$Lam

† %&50, QLam
† 5Qvm

† 5r m
† (a,0), we have

^$Lr l ~a,s!%am
† &52^r l ~a,s!r m

† ~a,0!&. ~4.14!

Substituting this into Eq.~4.8! gives, in the matrix form

G8~ t !5^r ~a,t !r †~a,0!&•^aa†&21. ~4.15!

Then the dissipation rateG8(v) takes the form

G8~v!5E
0

`

e2 ivt^r ~a,t !r †~a,0!&•^aa†&21dt.

~4.16!

The physical experiments such as the light scatterings
serve Eq. ~4.11! and explore the dissipation rateG0

1G8(v). Here Eq.~4.16! gives the fluctuation-dissipatio
formula which relates the dissipation rateG8(v) to the time-
correlation function of the chaotic or turbulent fluctuatin
force r (a,t).

Thus, in contrast to the evolution equations~2.7!, the evo-
lution equations~4.6! contain the memory functionG8(t) for
the chaotic or turbulent transport and the corresponding fl
tuating force r (a,t) explicitly. This has been derived b
renormalizing the molecular dissipation rateG0 by the non-
linear interactionsQv l (a) so as to give the chaotic or tur
bulent dissipation rateG8(v) explicitly @17#. Therefore, Eq.
~4.6! andȦl (t)5@ ȧl (t)#a5A(0) may be called the renorma
ized evolution equations. In this paper, however, these
referred to as the linear stochastic equations which giv
stochastic description of chaos and turbulence.

V. POWER SPECTRA AND ENTROPY PRODUCTION

Let us suppose that a chaotic orbita(t) is observed over a
long time interval 0<t<T with T@tM(>t r), wheretM and
t r are the decay times of^a(t)a†& and ^r (a,t)r †(a,0)&, re-
spectively. Now let us expandal (t) in a Fourier series as

al ~ t !5( 8
j

al ~v j !e
iv j t, ~5.1!

where the frequencies are

v j5
2p j

T
, ~ j 50,61,62, . . . ! ~5.2!

and ( j8 is the sum overv j ’s with a cutoff vc satisfying
1/tM<vc!1/tm for a microscopic time scaletm . Then the
linear stochastic equations~4.6! lead, fort@tM , to

ival ~v!5(
n

$ iV l n
0 2G l n

0 2G l n8 ~v!%an~v!1r l ~a,v!,

~5.3!
02630
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where vÞ6v0, v0 being the frequency ofK l (t). The
power spectrum ofal (t) is given by@12#

I l ~v![ lim
T→`

T

2p
^ual ~v!u2&

5
1

2p H(
m

J l m~v!^amal
† &1c.c.J . ~5.4!

Let us consider the low frequency components withuvu
!1/t r(<vc), so that we havetM@t r and the dissipation
rate G8(v) may be regarded as a constantG8[G8(v50).
Then, introducing the coarse graining of macrovariables
time

Al ~ t ![( 9
j

Al ~v j !e
iv j t ~5.5!

with Al (v j )[@al (v j )#a5A(0) and ( j9 being the sum over
v j8s with a cutoffvL(!1/t r), we obtain

Ȧl ~ t !5(
n

iV l n
0 An~ t !1Jl „A~ t !…1r l ~ t !1K l „A~ t !…,

~5.6!

where we have defined the dissipative flux

Jl ~A![2(
n

$G l n
0 1G l n8 %An ~5.7!

and the fluctuating forcer l (t)[@r l (a,t)#a5A(0) . It should
be noted that the memory term of Eq.~4.6! is reversible
under time reversal~2.9!, i.e.,

E
0

t

G l n8 ~s!an~ t2s!ds→enE
0

2t

G l n8 ~s!an~ t1s!ds,

52enE
0

t

G l n8 ~t!an~ t2t!dt

with G l n8 (2t)5G l n8 (t), whereasG l n8 an(t) is irreversible,
i.e., G l n8 an(t)→enG l n8 an(t). This irreversibility arises from
the coarse graining in time introduced in the above. The
fore, the dissipative flux~5.7! is irreversible and contribute
to the entropy production. Thus, instead of Eq.~2.12!, we
obtain

S̄̇5kBU(
l

]Ȧl

]Al
U5kBU(

l

]Jl

]Al
U5kB(

l
$G l l

0 1G l l8 %.

~5.8!

Namely, the dissipation rate( l G l l8 gives the entropy pro-
duction due to chaos or turbulence.

In the low-frequency casetM@t r , the fluctuating force
r l (t) is specified by

r l ~ t !50, r l ~ t !r n
†~ t8!52j l nd~ t2t8!, ~5.9!

wherej l n is the transport coefficients
2-5
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j l n[E
0

`

^r l ~a,t !r n
†~a,0!&dt5(

m
G l m8 ^aman

†&.

~5.10!

Thenr l (t) may be assumed to be a Gaussian white proc
Thus the Markovian equation~5.6! has the structure simila
to the linear Langevin equation for Brownian motion. L
P(a,t) be the probability density thatA(t) takes a value
arounda at timet. Then, the stochastic theory of Markovia
processes leads to the Fokker-Planck equation@12#

]

]t
P~a,t !5(

l

]

]al
F2(

n
$ iV l n

0 2G l n
0 2G l n8 %an2K l ~a!

1(
n

j l n

]

]an
†GP~a,t !. ~5.11!

It would be worth noting two remarks here.
~1! Chaos and turbulence in dissipative systems are

lated to the molecular thermal motions through the ene
dissipation as a channel, so that, if the molecular ther
motions vanish askB→0, then the entropy production due
chaos or turbulence also vanishes.

~2! Such energy dissipation due to chaos or turbulenc
not explicitly contained in the usual evolution equatio
~2.7!. Therefore, we have to derive an equation, such as
~5.6!, which contains the dissipative flux~5.7! explicitly by
introducing the renormalization and the coarse graining
time.

VI. CHAOS-INDUCED FRICTION g8„v…

Let us take the forced damped pendulum~2.1!, for which
a15q, a25p, a35f5v0t1f0, and q is set to be2p
<q<p with mod 2p. Then the three terms of Eq.~2.7! take
the form

v~a!5S p

2sinq

0
D , J0~a!5S 0

2g0p

0
D ,

K~a!5S 0

b cosf

v0 D , ~6.1!

where ^q&5^sinq&50, ^p&50. Now, applying Eqs.~4.6!,
~4.15!, and ~5.4!, let us explore the chaos-induced frictio
and the power spectra of the orbitsa(t).

Under time reversalt→2t, q→q, v0→2v0, we have
p→2p, f→f. Then we obtain̂qp&5^pf&5^fq&50 so
that

^al am
† &5^ual u2&d l m . ~6.2!

Since^p sinq&5^f sinq&50, we have
02630
s.
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n

iV l n
0 5

^v l ~a!an&

^uanu2&
5S 0 1 0

2V0
2 0 0

0 0 0
D , ~6.3!

whereV0
2[^q sinq&/^q2&. Then Eqs.~4.6! and~4.15! give the

linear stochastic equations

q̇5p, ḟ5v0, ~6.4!

ṗ52V0
2q2g0p2E

0

t

g8~s!p~ t2s!ds1r 2~a,t !

1b cos~v0t1f0!, ~6.5!

wherer 1(a,t)5r 3(a,t)50, ^r 2(a,t)p&50,

g8~s![
1

^p2&
^r 2~a,s!r 2~a,0!&5g8~2s!, ~6.6!

r 2~a,t !52etQL$sinq2V0
2q% ~6.7!

with Q andL being

Qf ~a!5 f ~a!2
^ f ~a!q&

^q2&
q2

^ f ~a!p&

^p2&
p2^ f ~a!&, ~6.8!

L5p
]

]q
2$sinq1g0p2b cosf%

]

]p
1v0

]

]f
. ~6.9!

Equation~4.16! givesG l n8 (v)5g8(v)d l 2dn2, where

g8~v![
1

^p2&
E

0

`

e2 ivt^r 2~a,t !r 2~a,0!&dt. ~6.10!

This is the chaos-induced friction coefficient. Then E
~4.12! leads to

ivJ l m~v!2 i(
n

V l n
0 Jnm~v!

5d l m2$g01g8~v!%d l 2J2m~v!. ~6.11!

SinceiV l n
0 5d l 1dn22V0

2d l 2dn1, this leads to

ivJ12~v!2J22~v!50, ~6.12!

ivJ22~v!1V0
2J12~v!512$g01g8~v!%J22~v!.

~6.13!

This is solved to give

J22~v![
1

^p2&
E

0

`

e2 ivt^p~ t !p~0!&dt

5
v

i ~v22V0
2!1v$g01g8~v!%

, ~6.14!
2-6
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andJ12(v)5J22(v)/ iv.
For a2(v)5p(v), the power spectrum~5.4! becomes

I p~v!5
^p2&
2p

$J22~v!1c.c.%, ~6.15!

5
^p2&
p

v2$g01Reg8~v!%

$~v22V0
2!1v Im g8~v!%21v2$g01Reg8~v!%2

,

~6.16!

wherevÞ6v0. For a1(v)5q(v)5p(v)/ iv,

I q~v!5
1

v2
I p~v!. ~6.17!

Thus it turns out that the structure of the power spectra of
orbitsa(t) is determined by the chaos-induced friction co
ficient g8(v).

In the case of low frequenciesuvu!1/t r(<g0), we may
neglect thev dependence of the friction coefficientg8(v).
Then the power spectra~6.16! and ~6.17! are characterized
by V0 and g5g01g8(v50) with Img850, and become
similar to those of the Brownian motion under an elas
force of frequencyV0 @12#. Indeed, using Eq.~5.11! with
j l n5jd l 2dn2 ,(j5g8^p2&) leads to the Kramers equation

]

]t
P~q,p,t !5F2

]

]q
p1

]

]p
$V0

2q1~g01g8!p

2bcos~v0t1f0!%1j
]2

]p2GP~q,p,t !.

~6.18!

Further in the low-frequency casetM@t r , Eq.~5.8! leads
to the entropy production

S̄̇5kBU(
l

]Ȧl

]Al
U5kB~g01g8!, ~6.19!

whereg8[g8(v50). We haveg8@g0 for a strong chaos.

VII. TURBULENT VISCOSITY n8„k,v…

Let us take 3d turbulence in an incompressible fluid go
erned by the Navier-Stokes equation~2.3!, which is assumed
to be statistically homogeneous and isotropic.

Then Eqs.~4.6! and ~4.15! lead to the linear stochasti
equations

u̇ak~ t !52n0k2uak~ t !2E
0

t

n8~k,s!k2uak~ t2s!ds

1r ak~u,t !1Kak , ~7.1!

where^r ak(u,t)ubp
† &50,
02630
e
-

n8~k,s![
^r ak~u,s!r ak

† ~u,0!&

k2^uuaku2&
, ~7.2!

r ak~u,t ![etQLvak~u! ~7.3!

with Q andL being

Qf ~u!5 f ~u!2(
b

( 8
p

^ f ~u!ubp
† &

^uubpu2&
ubp , ~7.4!

L5(
a

( 8
k

$vak~u!2n0k2uak1Kak%
]

]uak

. ~7.5!

Thus the renormalization ofn0 by the inertial termvak(u)
leads to the memory functionn8(k,s) and the turbulent fluc-
tuating forcer ak(u,t).

Since^r ak(u,t)uak
† &50, Eq. ~7.1! leads to

Jak~v![
1

^uuaku2&
E

0

`

e2 ivt^uak~ t !uak
† ~0!&dt

5
1

iv1n0k21n8~k,v!k2
, ~7.6!

wheren8(k,v) is the Laplace transform of Eq.~7.2!,

n8~k,v![
1

k2^uuaku2&
E

0

`

e2 ivt^r ak~u,t !r ak
† ~u,0!&dt.

~7.7!

Sincen8(k,v)k2 represents the energy dissipation rate d
to turbulence,n8(k,v) is the turbulent viscosity, and Eq
~7.7! gives the fluctuation-dissipation formula which relat
the turbulent viscosityn8(k,v) to the time-correlation func-
tion of the fluctuating forcer ak .

In the case of small wave numbersk!kc and low fre-
quenciesuvu!1/t r(<n0k2) wheretM(k)@t r(k), Eq. ~5.8!
gives the entropy production

S̄̇53kB( 9
k

$n01n8~k!%k2, ~7.8!

wheren8(k)[n8(k,v50), and(k9 is the sum overk’s with
a cutoff kL(!kc).

Next let us take isotropic, fully developed turbulence a
consider thek dependence of the turbulent viscosityn8(k,v)
in the inertial subrange, where we can neglect the molec
viscosity term and the external force so that the Navi
Stokes equation~2.3! is invariant under a scale transform
tion @21,22#. Let us assume that the characteristic turno
time tk of eddies of sizel 51/k is estimated as

tk;
l

Du~ l !
;k2z, ~7.9!

with an exponentz, whereDu(l ) is the characteristic turn
over velocity of the eddies. The linear stochastic equat
2-7



is
es

t

f
of

p
o
tio

-

di
u
ic

a

rm

x-

n

e

v-

ise

HAZIME MORI AND HIROKAZU FUJISAKA PHYSICAL REVIEW E 63 026302
~7.1! which is equivalent to the Navier-Stokes equation
also invariant under the scale transformation. This sugg
that the following scaling relations hold:

uak~ t !5k2uũaS k

k
,tkzD , ~7.10!

r ak~ t !5k2u1zr̃ aS k

k
,tkzD , ~7.11!

whereu is a certain exponent, andũa(x,y) and r̃ a(x,y) are
universal functions ofx and y. If we use the expression
^uuaku2&;k232z(2), then Eq. ~7.10! leads to u5 1

2 @3
1z(2)#. Since the average kinetic energy of the eddies
estimated as@21,22#

^@Du~ l !#2&;k2z(2) ~7.12!

with z(2)5 2
3 2m2/3 in terms of the intermittency exponen

mq of order q, Eq. ~7.9! leads toz512 1
2 z(2). Putting m

[m2, we havem2/352m/9 for the log-normal theory and
m2/352m/3 for theb model @21#. Therefore we have

z5
2

3
1

1

2
m2/3. ~7.13!

Substituting Eqs.~7.10! and ~7.11! into Eq. ~7.7!, we obtain

n8~k,v!5k2212uE
0

`

e2 ivtk22u12zg~ tkz!dt,

5k221zf ~vk2z!, ~7.14!

where f (x) is a unique function ofx, being independent o
the coordinate indexa because of the isotropic nature
turbulence. This leads ton8(k,v)5k2b f (vk2z) with

b[22z5
4

3
1

1

2
um2/3u. ~7.15!

If one neglects the intermittency correctionm2/3 in z(2), then
this agrees with the classical resultb5 4

3 @8,9#.
It would be worth mentioning the renormalization-grou

theory of turbulence which has been developed first by F
ster, Nelson, and Stephen for the Navier-Stokes equa
@23#. In this theory the molecular viscosityn0 is renormal-
ized by the hydrodynamic modesuak by eliminating the
modesuak with K>k.K85K/el (l .1) successively start
ing from K5kc and deriving a renormalized equation fork
!kc . This has been done approximately by means of a
grammatic perturbation theory. In order to obtain the turb
lent viscosity, however, the elimination of the hydrodynam
modes is not necessary. Indeed, the renormalization ofn0 by
the nonlinear interactionsvak(u) is sufficient, and this has
been shown exactly in Sec. IV, leading to the linear stoch
tic equation~7.1! and the turbulent viscosity~7.7!.
02630
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VIII. EXTERNAL NOISE EFFECT AND NONLINEAR
DISSIPATIVE TERM J0

„A…

It often occurs that an external noiseRl (t) is added so
that the evolution equation~2.7! becomes stochastic:

Ȧl ~ t !5Sl „A~ t !…1Rl ~ t !, ~8.1!

where the systematic part consists of three terms

Sl ~A![v l ~A!1Jl
0 ~A!1K l ~A!. ~8.2!

In the following, we further assume that the dissipative te
Jl

0 (A) is generally nonlinear in contrast to Eq.~2.8!, and
then we will show how the foregoing theory must be e
tended.

The external noiseRl (t) is assumed to be a Gaussia
white process, being specified by

^Rl ~ t !;b&50, ^Rl ~ t !Rm
† ~ t8!;b&52D l md~ t2t8!,

~8.3!

where ^•••;b& denotes the conditional average with th
value ofA being fixedb at t50:

^G~ t !;b&[
G~ t !gb~0!

gb~0!
, ~8.4a!

G~ t !gb~0![ lim
T→`

1

TE0

T

G~ t1s!gb~s!ds ~8.4b!

with gb(s)[d@A(s)2b#. The conditional probability den-
sity that, given a valueb at the initial timet50, one finds
A(t) in the range (a,a1da) at a later timet, is given by

P~a,tub,0!5^ga~ t !;b&. ~8.5!

Then it is well known that the stochastic theory of Marko
ian processes leads to

]

]t
P~a,tub,0!5F2(

l

]

]al

Sl ~a!

1(
l

(
m

]2

]al ]am
†

D l mGP~a,tub,0!

[M P~a,tub,0!, ~8.6!

with the Fokker-Planck operatorM @12#. The constant
D l m(5Dml

† ) represents the intensity of the external no
Rl (t).

Since Al (t)5*al ga(t)da, the stochastic equation~8.1!
leads to

]

]t
ga~ t !5Mga~ t !1Fa~ t !, ~8.7!

whereFa(t) is the master fluctuating force
2-8
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Fa~ t ![2(
l

]

]al
$Rl ~ t !d„A~0!2a…%, ~8.8!

satisfying

^Fa~ t !;b&50, E al Fa~ t !da5Rl ~ t !. ~8.9!

This will be shown in the Appendix. Indeed, the Fokke
Planck equation~8.6! is derived from Eq.~8.7! by taking the
conditional averagê•••;b& and using Eqs.~8.8! and ~8.9!.
Equation~8.1! is also derived from Eq.~8.7!. Thus any in-
formation about the dynamics ofA(t) can be derived from
Eq. ~8.7!. Hence Eq.~8.7! is called themaster equation.

Multiplying the 1st equation of Eq.~8.9! by a function
f (b) and integrating overb, we obtain Fa(t) f „A(0)…50
5Rl (t) f „A(0)…. Namely, the external noisesRl (t) and
Fa(t) are orthogonal to any function ofA(0) in contrast to
that in Sec. IV noise is orthogonal only to a linear function
A(0). This is because the systematic partSl (a) is nonlinear
in contrast to Eq.~4.6!.

Integrating Eq. ~8.7!, and substituting its result into
Al (t)5*al ga(t)da yield

Al ~ t !5E al ~ t !ga~0!da1E
0

tE al ~ t2s!Fa~s!dads,

~8.10!

whereal (t)[etLal similarly to Eq.~3.10! but with

L[(
l

Sl ~a!
]

]al

1(
l

(
m

D l m

]2

]al ]am
†

. ~8.11!

It should be noted that the time evolution ofal (t) is deter-
ministic, although that ofAl (t) is stochastic due to the pres
ence of the second term of Eq.~8.10!.

Let us consider the time-correlation functions~3.1!. Since
Fa(s)Am

† (0)50, substituting Eq.~8.10! into Eq. ~3.1! gives

Al ~ t !Am
† ~0!5^al ~ t !am

† &[E P* ~a!al ~ t !am
† da

~8.12!

similarly to Eq. ~3.13!, where P* (a)[ga(s)
5 limt→`P(a,tub,0) is the steady probability density and sa
isfiesM P* (a)50.

Since Lal 5Sl (a), using the projection operator~4.1!
leads to

ȧ~ t !5$ iV02G0%•a~ t !1etLQ$v~a!1J0~a!%1K„a~ t !…,
~8.13!

whereiV0 is given by Eq.~4.4! and

G0[2^J0~a!a†&•^aa†&21. ~8.14!

Substituting Eq.~4.5! into Eq. ~8.13! gives
02630
f

ȧ~ t !5$ iV02G0%•a~ t !2E
0

t

G8~s!•a~ t2s!ds1r ~a,t !

1K„a~ t !…, ~8.15!

where, as the extension of Eqs.~4.7! and ~4.15!,

r ~a,t ![etQLQ$v~a!1J0~a!%, ~8.16!

G8~s![^r ~a,s! r̃ †~a!&•^aa†&21, ~8.17!

and themth component of the vectorr̃ (a) is given by

r̃ m~a![2Q 1

P* ~a!
M $amP* ~a!%, ~8.18!

5Q$vm~a!1Jm
0 ~a!%

22Q(
n

Dmn

]

]an
†

ln P* ~a!. ~8.19!

It should be noted that Eqs.~8.16! and~8.17! reduce to Eqs.
~4.7! and~4.15! if and only if J0(a) is linear and there is no
external noiseD l m50.

Since ^r (a,t)a†&50, Eq. ~8.15! gives a linear transpor
equation for the time-correlation matrix^a(t)a†&, so that Eq.
~8.12! leads to

J~v![E
0

`

e2 ivtA~ t !A†~0!•@AA†#21dt

5
1

i ~v2V0!1G01G8~v!
~8.20!

with the energy dissipation rate

G8~v!5E
0

`

e2 ivt^r ~a,t ! r̃ †~a!&•^aa†&21dt. ~8.21!

This is the extension of the fluctuation-dissipation formu
~4.16!, and shows how the external noises and nonlinea
of J0(a) modify the transport and energy dissipation.

TakingȦl (t) of Eq. ~8.10! and using Eq.~8.15! for ȧl (t),
we obtain the linear stochastic equation

Ȧ~ t !5$ iV02G0%•A~ t !2E
0

t

G8~s!•A~ t2s!ds1 f ~ t !

1K„A~ t !…, ~8.22!

where f (t) is the renormalized fluctuating force

f ~ t ![R~ t !1E r ~a,t !ga~0!da

1E
0

tE r ~a,t2s!Fa~s!dads. ~8.23!
2-9
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Equation~8.22! is equivalent to Eq.~8.1! but contains the
memory functionG8(s) and chaotic or turbulent fluctuatin
force r (a,t) explicitly in contrast to Eq.~8.1!.

IX. SHORT SUMMARY

The particular intention of this paper has been to der
the linear stochastic equations~4.6! for chaos or turbulence
from the nonlinear evolution equations~2.7!, where the
Laplace transformG8(v) of the memory function~4.8! gives
the chaotic or turbulent transport coefficients and their
ergy dissipation rates. This has been done by using
projection-operator method which transforms the nonlin
term Qv(a) of Eq. ~2.7! into the sum of a linear transpo
term and a nonlinear fluctuating forcer (a,t). Indeed this
amounts to the renormalization of the molecular transp
termJ0(a) by the nonlinear termQv(a). Thus the nonlinear
evolution equations~2.7! have been transformed into the lin
ear stochastic equations~4.6! which are useful for construct
ing a stochastic description of chaos and turbulence.

Thus it has turned out that chaos and turbulence b
about various transport processes whose dissipation
G8(v) are given by the fluctuaton-dissipaton formula~4.16!
in terms of the chaotic or turbulent fluctuating forcesr (a,t).
For the low frequency components of macrovariablesAl (v)
with uvu!1/t r , the dissipation ratesG8(v) may be regarded
as constantsG85G8(v50). Then the coarse graining o
macrovariables in time, given by Eq.~5.5!, has enabled us to

introduce the entropy productionS̄̇ due to chaos or turbu
lence explicitly, as shown in Eq.~5.8!.

Then the Laplace transform of the time-correlation fun
tions of macrovariables~4.11! and the power spectra~5.4!
can be written in terms of the dissipation ratesG8(v), indi-
cating their physical structures explicitly, as shown in t
case of forced damped pendulum. The fluctuation-dissipa
formula ~4.16! for the dissipation ratesG8(v) give exact
expressions for the chaotic or turbulent transport coefficie
This has been applied to the chaos-induced friction coe
cient g8(v) in a forced damped pendulum and the turbule
viscosityn8(k,v) in fully developed turbulence.

If an external noiseRl (t) is added as in Eq.~8.1!, then it
has turned out that Eqs.~4.16! and ~4.6! are extended to the
fluctuation-dissipation formula~8.21! and the linear stochas
tic equation~8.22!, respectively. Thus it turns out that th
stochastic motion of chaos and turbulence can be treate
extending the concept of the fluctuating forces of the Brow
ian motion, and the linear stochastic equations~4.6! and
~8.22! which are non-Markovian give the basis for the s
chastic approach to chaos and turbulence. This is also us
for clarifying what transport processes are brought abou
chaos and turbulence.

APPENDIX: DERIVATION OF EQ. „8.7…

The stochastic equation~8.1! leads to

]

]t
ga~ t !52(

l

]

]al
@$Sl ~a!1Rl ~ t !%ga~ t !#5V~a,t !ga~ t !.

~A1!
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This is integrated to give

ga~ t !5exp1F E
0

t

V~a,s!dsGga~0!

5E gb~0!Ub~ t !d~a2b!db, ~A2!

where we defined

Ub~ t ![exp2F E
0

t

L~b,s!dsG ,
L~b,t ![(

l
$Sl ~b!1Rl ~ t !%

]

]bl

. ~A3!

Equation~A2! leads to

]

]t
ga~ t !5E gb~0!H ]

]t
Ub~ t !J d~a2b!db. ~A4!

To treat this, let us introduce the projection operator@17#

PZG~ t !5E ^G~ t !;b&gb~0!db, ~A5!

where ^G(t);b& is the conditional average~8.4a!. Using
QZ[12PZ , let us define

Ũb~ t ![exp2F E
0

t

QZL~b,s!dsG . ~A6!

This leads to the operator identity

Ub~ t !5Ũb~ t !1E
0

t

Ub~s!PZL~b,s!@Ũb~s!#21Ũb~ t !ds,

~A7!

which is a generalization of Eq.~4.5!. Therefore, substituting
(]/]t)Ub(t)5Ub(t)PZL(b,t)1Ub(t)QZL(b,t) into Eq.
~A4! and using Eq.~A7! for the second term, we obtain

]

]t
ga~ t !5E gb~0!FUb~ t !PZL~b,t !1Ũb~ t !QZL~b,t !

1E
0

t

Ub~s!PZL~b,s!

3@Ũb~s!#21Ũb~ t !QZL~b,t !dsGd~a2b!db.

~A8!

Here, sincê Rl (t);b&50, we obtain

PZL~b,t !d~a2b!52(
l

]

]al
@Sl ~a!d~a2b!#, ~A9!

QZL~b,t !d~a2b!52(
l

]

]al
@Rl ~ t !d~a2b!#.

~A10!

The three terms of Eq.~A8! can be transformed into the thre
terms of Eq.~8.7! as follows. Indeed the first term of Eq
~A8! can be written as
2-10
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2(
l

]

]al
@Sl ~a!ga~ t !#, ~A11!

where use has been made of Eq.~A2!. The second term o
Eq. ~A8! takes the form

2(
l

]

]al
F E gb~0!Ũb~ t !$Rl ~ t !d~a2b!%dbG

'2(
l

]

]al
F E gb~0!d~a2b!$Ũb~ t !Rl ~ t !%dbG

52(
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@Rl ~ t !ga~0!#5Fa~ t !. ~A12!

The third term of Eq.~A8! can be written as
c-

ce

s

ce
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† E E

0

t
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(
m

]2

]al ]am
† E E

0

t

gb~0!Ub~s!PZRm
† ~s!Rl ~ t !

3d~a2b!dsdb,

5(
l

(
m

]2

]al ]am
† @D l mga~ t !#, ~A13!

where use has been made of Eqs.~8.3! and ~A2!. The sub-
stitution of Eqs.~A11!–~A13! into Eq. ~A8! gives Eq.~8.7!.
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